sprachText/stt_test.py

98 lines
3.1 KiB
Python
Raw Normal View History

2025-01-06 18:04:01 +01:00
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import sounddevice as sd
import numpy as np
import wave
import gradio as gr
2025-01-06 18:05:19 +01:00
import time
2025-01-06 18:04:01 +01:00
# Setup device
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load Whisper model
model_id = "openai/whisper-large-v3-turbo"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
# Audio recording settings
SAMPLE_RATE = 16000 # Whisper prefers 16 kHz
FILENAME = "recorded_audio.wav"
is_recording = False
2025-01-06 18:05:19 +01:00
start_time = None # Track the recording start time
2025-01-06 18:04:01 +01:00
recorded_audio = None
def start_recording():
"""Starts recording audio."""
2025-01-06 18:05:19 +01:00
global is_recording, recorded_audio, start_time
2025-01-06 18:04:01 +01:00
is_recording = True
2025-01-06 18:05:19 +01:00
start_time = time.time() # Record the start time
2025-01-06 18:04:01 +01:00
print("Recording started...")
recorded_audio = sd.rec(int(SAMPLE_RATE * 60), samplerate=SAMPLE_RATE, channels=1, dtype=np.float32)
return "Recording... Click 'Stop Recording' to finish."
def stop_recording():
"""Stops recording audio and saves it."""
2025-01-06 18:05:19 +01:00
global is_recording, recorded_audio, start_time
2025-01-06 18:04:01 +01:00
if not is_recording:
return "Not recording!"
sd.stop()
is_recording = False
2025-01-06 18:05:19 +01:00
elapsed_time = time.time() - start_time # Calculate elapsed time
print(f"Recording stopped. Duration: {elapsed_time:.2f} seconds.")
save_audio_to_wav(recorded_audio[:int(SAMPLE_RATE * elapsed_time)], FILENAME) # Truncate to actual duration
2025-01-06 18:04:01 +01:00
return "Recording stopped. Click 'Transcribe' to see the result."
def save_audio_to_wav(audio, filename):
"""Saves audio data to a WAV file."""
audio = (audio * 32767).astype(np.int16) # Convert to 16-bit PCM format
with wave.open(filename, 'w') as wf:
wf.setnchannels(1) # Mono
wf.setsampwidth(2) # 2 bytes per sample
wf.setframerate(SAMPLE_RATE)
wf.writeframes(audio.tobytes())
def transcribe_audio():
"""Transcribes the audio file using Whisper."""
print("Transcribing...")
result = pipe(FILENAME)
print("Transcription complete.")
return result["text"]
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("# Voice to Text App")
gr.Markdown("Click 'Start Recording' to record your voice, 'Stop Recording' to save, and 'Transcribe' to convert speech to text.")
start_button = gr.Button("Start Recording")
stop_button = gr.Button("Stop Recording")
transcribe_button = gr.Button("Transcribe")
output = gr.Textbox(label="Output")
start_button.click(start_recording, outputs=output)
stop_button.click(stop_recording, outputs=output)
transcribe_button.click(transcribe_audio, outputs=output)
if __name__ == "__main__":
interface.launch()